DELFT UNIVERSITY OF TECHNOLOGY REPORT 07-09 A Minimal Residual Method for Shifted Skew-Symmetric Systems

نویسندگان

  • R. Idema
  • C. Vuik
چکیده

We describe the MRS solver, a Minimal Residual method based on the Lanczos algorithm that solves problems from the important class of linear systems with a shifted skew-symmetric coefficient matrix using short vector recurrences. The MRS solver is theoretically compared with other Krylov solvers and illustrated by some numerical experiments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioned Generalized Minimal Residual Method for Solving Fractional Advection-Diffusion Equation

Introduction Fractional differential equations (FDEs)  have  attracted much attention and have been widely used in the fields of finance, physics, image processing, and biology, etc. It is not always possible to find an analytical solution for such equations. The approximate solution or numerical scheme  may be a good approach, particularly, the schemes in numerical linear algebra for solving ...

متن کامل

Solving large systems arising from fractional models by preconditioned methods

This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...

متن کامل

On a weighted quasi-residual minimization strategy of the QMR method for solving complex symmetric shifted linear systems

We consider the solution of complex symmetric shifted linear systems. Such systems arise in large-scale electronic structure simulations and there is a strong need for the fast solution of the systems. With the aim of solving the systems efficiently, we consider a special case of the QMR method for non-Hermitian shifted linear systems and propose its weighted quasi-minimal residual approach. A ...

متن کامل

On a Weighted Quasi-residual Minimization Strategy for Solving Complex Symmetric Shifted Linear Systems

We consider the solution of complex symmetric shifted linear systems. Such systems arise in largescale electronic structure simulations, and there is a strong need of algorithms for their fast solution. With the aim of solving the systems efficiently, we consider a special case of the QMR method for non-Hermitian shifted linear systems and propose its weighted quasi-minimal residual approach. A...

متن کامل

Numerical Investigation of Krylov Subspace Methods for Solving Non-symmetric Systems of Linear Equations with Dominant Skew-symmetric Part

Numerical investigation of BiCG and GMRES methods for solving non-symmetric linear equation systems with dominant skew-symmetric part has been presented. Numerical experiments were carried out for the linear system arising from a 5-point central difference approximation of the two dimensional convection-diffusion problem with different velocity coefficients and small parameter at the higher der...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007